Pedi-Cap™ CO₂ detector

Presentation redeveloped for this program by Rosemarie Boland from an original presentation by Johnston, Adams & Stewart, (2006)

© Victorian Newborn Resuscitation Project
Background

- Clinical methods of assessing endotracheal tube placement have not been systematically evaluated in neonates

- End tidal CO₂ detectors identify oesophageal intubation faster than clinical assessment (Mean 8.1 seconds versus 39.7 seconds)

(Garey, et al., 2008)
Clinical verification of ETT position

Tracheal intubation is likely if:

- The ETT is visualized passing through the vocal cords
- The heart rate rises above 100 bpm soon after intubation & commencing positive pressure ventilation
- Breath sounds are auscultated in both axillae
- Condensation is seen on the inside of the endotracheal tube during expiration
- The infant’s chest rises and falls with each inflation

(Australian Resuscitation Council, 2006)
ARC recommendation

“An end tidal CO₂ detector attached to the outside end of the endotracheal tube is recommended for verification of correct tube placement”

(Australian Resuscitation Council, 2006, Guideline 13.5)
Benefits of using a Pedi-Cap™

- Quick confirmation of correct ETT placement in the trachea
- Easy to use
- Inserts quickly into the circuit
- Inexpensive
- Portable
- Risk management strategy
How does the Pedi-Cap™ work?

- The Pedi-Cap™ is a semi-quantitative, non invasive colorimetric end tidal CO\textsubscript{2} (ETCO\textsubscript{2}) detector
- The device starts at a base line colour when minimal CO\textsubscript{2} is present and undergoes gradual colour change as the concentration of exhaled CO\textsubscript{2} increases with each positive pressure inflation delivered to the infant
- ETCO\textsubscript{2} is a reflection of ventilation, cardiac output, pulmonary blood flow and metabolism
The effect of pulmonary perfusion on ETCO$_2$

- If perfusion is adequate, ETCO$_2$ represents the partial pressure of CO$_2$ in circulating blood. This will be demonstrated inflation-to-inflation on the Pedi-Cap™ after successful intubation.

- Inadequate cardiac output & decreased pulmonary perfusion (e.g. during cardiac-respiratory arrest) will lead to negligible ETCO$_2$ detection as CO$_2$ is not being delivered to the lungs.

(Garey, et al., 2008)
Connecting the Pedi-Cap™

- The Pedi-Cap™ is inserted between the outer end of the endotracheal tube and the manual ventilation device (e.g. Neopuff™ or self inflating bag).
Interpreting the results

- After 6 effective positive pressure inflations, evaluate the colour of the window on expiration.
- Successful tracheal intubation is confirmed if the Pedi-Cap™ window changes from purple (on inspiration) to yellow (on expiration) with every positive pressure inflation delivered to the infant.

The following slides describe all the colour changes that may be seen and their meaning.

Victorian Newborn Resuscitation Project
Successful tracheal intubation

The Pedi-Cap™ window changes colour on expiration from purple to gold or mustard yellow

Victorian Newborn Resuscitation Project
Poor perfusion or insufficient tidal volume \((V_T)\) is being delivered.

The Pedi-Cap™ window changes colour on expiration to light or dark tan if perfusion is poor or insufficient \(V_T\) is being delivered.
No perfusion, cardiac arrest or oesophageal intubation

The Pedi-Cap™ window stays purple or dark grey on expiration if there is no perfusion or the ET tube is in the oesophagus.
Damaged Pedi-Cap™

- Contamination with Adrenaline
- Contamination with surfactant
- Exposure to gastric juices
- Prolonged exposure to high humidity

The Pedi-Cap™ window stays yellow on both inspiration & expiration, indicating a damaged Pedi-Cap™
Caution when using a Pedi-Cap™

- Despite being correctly placed in the trachea, there are circumstances in which the Pedi-Cap™ may not change colour. This may occur when:
  - Insufficient inflations are delivered
  - Insufficient tidal volume is delivered
  - There is significant air leak around the endotracheal tube
  - The infant is in full circulatory arrest
Management during cardiac arrest

- In cardiac arrest, re-establishment of cardiac output and pulmonary perfusion by adequate CPR is necessary to increase end tidal CO$_2$ to a level detectable by the Pedi-Cap™

- Actions:
  - Continue ECC & positive pressure ventilation at 3:1
  - Check that the ETT can be visualized passing through the vocal cords: re-intubate if it is not
  - If the ETT is through the vocal cords, increase the PIP to ensure a sufficient tidal volume is being delivered
The very low birth weight infant

- The Pedi-Cap™ CO₂ detector is labeled for use in infants > 1 kg birth weight

- Research has shown that the tidal volume of a viable (400 gram) infant is above the tidal volume threshold for the Pedi-Cap™ device, suggesting that a Pedi-Cap™ is appropriate for use on any size neonate to confirm intubation (Garey, et al., 2008)
Limitations of the Pedi-Cap™

- A positive colour change will occur when the endotracheal tube is in any portion of the respiratory tree, such as the right main bronchus or oropharynx.

- A chest X-ray remains the gold standard to confirm correct endotracheal tube position in any infant who requires intubation.

Victorian Newborn Resuscitation Project
Conclusion

- The Pedi-Cap™ can quickly verify endotracheal tube placement in the trachea
- It is easy to use
- It is easy to learn to use
- Caution is required in certain situations
- A Pedi-Cap™ should be standard equipment on newborn resuscitation cots

(Australian Resuscitation Council, 2006)
Pedi-Cap™ product details

- Weighs < 5 grams
- Dead space: 3 mL
- Resistance: 2.5 cm H₂O (+/- 0.5 cm) at 10 L/min flow
- Single patient use, but can be used intermittently or continuously on an infant for two hours

Victorian Newborn Resuscitation Project
Supplier

Tyco Healthcare Pty Ltd
Telephone: 1800 252 467
Pedi-Cap™ Pediatric CO₂ Detector
Box of 6
References


Acknowledgments

This presentation is adapted from an original presentation by Johnston, E., Adams, A., & Stewart, M. (2006).

NeoResus gratefully acknowledges and thanks the authors for allowing their presentation to be adapted for this program.
Disclaimer

This teaching program has been developed by the Newborn Emergency Transport Service (NETS) part of The Royal Women's Hospital (RWH) as an educational program around neonatal care with the assistance of a grant from the Department of Health Victoria.

Whilst appreciable care has been taken in the preparation of this material RWH shall not be held responsible for any act or omission which may result in injury or death to any baby as a result of reliance on this material.

Victorian Newborn Resuscitation Project
Copyright

- This material is copyright NeoResus: The Victorian Newborn Resuscitation Project

- This presentation may be downloaded for personal use but remains the intellectual property of NeoResus and as such, may not be reproduced or used for another training program without the written permission of the Victorian Newborn Resuscitation Project Executive

- Please contact us at admin@neoresus.org.au