
neoResus The Victorian Newborn Resuscitation Project

First Response Learning Module 2 Based on ILCOR and ANZCOR 2016

> © Victorian Newborn Resuscitation Project Updated February 2016

Transition to extra-uterine life

- Very few newborns require "resuscitation"
- Most will respond to simple interventions
- First Response interventions are therefore most important & time critical

neoResus

neoResus

neoResus

Resuscitation at birth in Australia: 2012				
Suctioning	5%			
Oxygen therapy	5%			
Positive pressure ventilation	5%			
Intubation & positive pressure ventilation	1%			
Cardiac compressions & positive pressure ventilation	0.3%			

Preparation for resuscitation

- Anticipation of need
- Based on risk assessment
- Equipment
 - Checked and ready for use
- Environment
- Warm and clean
- Skilled personnel
 - Able to form a team, nominate leadership and develop a plan of action

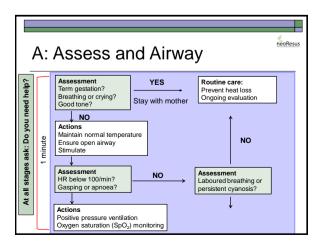
Updated February 2016 © Victorian Newborn Resuscitation Project

Cord clamping & cord milking

- ILCOR and the ANZCOR suggest:
- Delayed cord clamping for 30-60 seconds if:
- Uncomplicated term or preterm birth, and
- Not requiring immediate resuscitation
- For compromised newborns:
- Insufficient evidence for optimal timing of cord clamping in term and preterm depressed newborns
- Insufficient evidence of benefit of cord milking, especially if <28 weeks. Not recommended.

Monitoring

- Pulse oximetry is recommended:
 - When the need for resuscitation is anticipated
 - When CPAP or positive pressure is used
 - When persistent cyanosis is suspected
 - When supplemental oxygen is used
 - Place the oximeter sensor on the right wrist or hand (pre-ductal oxygen saturation)

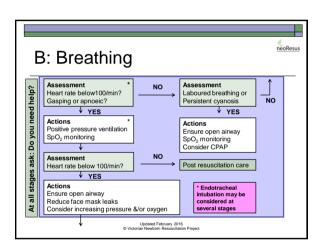

neoResus

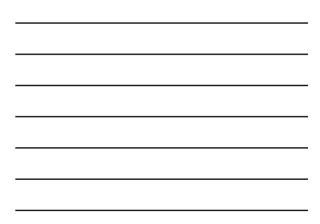
- ECG monitoring:
 - May be used as an adjunct to auscultation and pulse oximetry (if readily available)

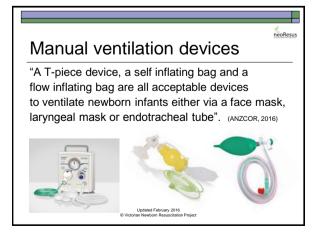
Updated February 2016 © Victorian Newborn Resuscitation Pro

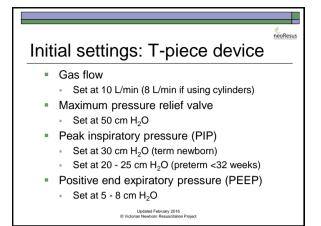
Strategies to maintain normal core temperature: 36.5 - 37.5°C

- Very preterm newborns (<32 weeks):
 - Place (wet & warm) into a polyethylene bag or under a polyethylene sheet
 - Radiant warmer
 - Additional measures (alone or in combination):
 - Covering the head (except the face) with a hat/bedding
 - Ambient room temperature 23 26°C
 - Exothermic warming mattress




If meconium liquor is present Clear the oro-pharynx if obvious meconium If the newborn is vigorous:

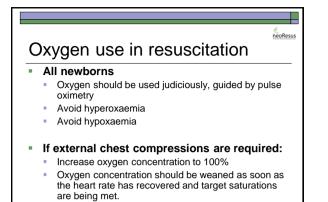

 Endotracheal suctioning is discouraged because it does not alter outcome and may cause harm


If the newborn is not vigorous:

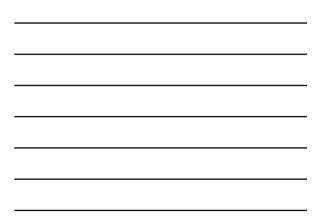
- No evidence of the value of routine or repeated endotracheal suctioning to prevent meconium aspiration
- Likely to cause further delays in resuscitation
- Tracheal intubation for suctioning should only be performed for suspected tracheal obstruction.

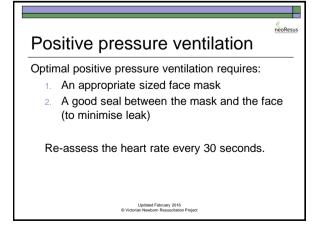
PEEP during resuscitation

- Without PEEP:
 - Lung aeration is not achieved as quickly
 - Functional residual capacity (FRC) is not established
- With PEEP:
 - FRC is established and maintained
 - Oxygenation is improved
- ANZCOR (2016) recommend:
 - PEEP of 5 8 cm H₂O during resuscitation of newborn infants if appropriate equipment available


Updated February 2016 © Victorian Newborn Resuscitation Project

neoResus


neoResus


Oxygen use in resuscitation

- Term and near term newborns
 - Use room air (21%) initially.
 - Introduce supplemental oxygen if lower end of target saturations are not met, despite respiratory support
- Preterm newborns <35 weeks' gestation</p>
 - Use room air (21%) or
 - Blended air and oxygen (up to 30%) to start
 - Avoid initiating resuscitation with high supplementary oxygen concentrations (65-100%)
 - If a blend of air and oxygen is not available, use air

			_			
Target saturations for newborn						
	Time after birth in minutes	Targeted pre-ductal oxygen saturations for newborn infants during resuscitation				
	1 minute	60 - 70%				
1	2 minutes	65 - 85%				
:	3 minutes	70 – 90%				
4	4 minutes	75 – 90%				
ł	5 minutes	80 - 90%				
	10 minutes	85 - 90%				
	ANZCOR ² , 2016	Guideline 13.4				

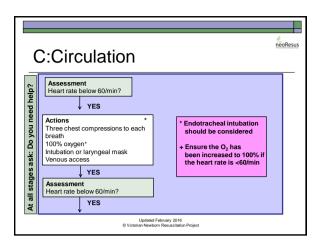
Ventilation rate and pressure

- Rate: 40 60 inflations per minute
- Peak inflating pressure (PIP):
- Variable and should be individualised
- Effective ventilation may be achieved with progressively lower pressures and rates
- Avoid hyperventilation (excessive PIP &/or rate)
 - Can lead to dangerously low CO₂ levels (<30 mmHg)

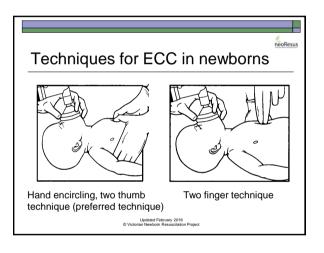
neoResus

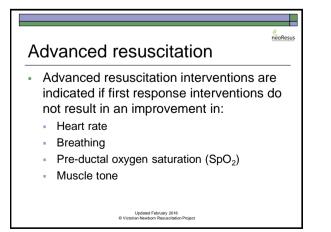
- Can depress respiratory drive
- Can reduce cerebral blood flow

Updated February 2016 © Victorian Newborn Resuscitation Project

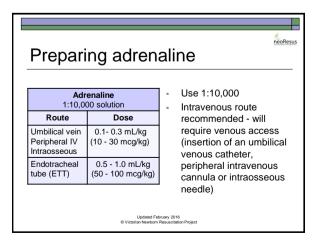

Assessing the effectiveness of formation for the second se

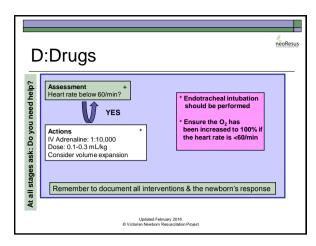
- Re-assess the heart rate every 30 seconds
- The effectiveness of ventilation is confirmed by:
- 1. An increase in the heart rate above 100/min.
- 2. A slight rise and fall of the chest and upper abdomen with each inflation.
- 3. An improvement in oxygenation (assessed by pulse oximetry).


Updated February 2016 © Victorian Newborn Resuscitation Project

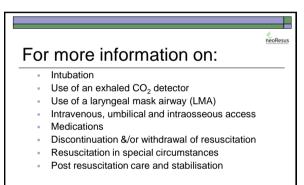

If the heart rate is not improving with former positive pressure ventilation

- Check the ventilation technique
 - Is there a face mask leak?
 - Is the airway patent?
- Increase the peak inflating pressure
 - Increase the PIP in 5 cm increments:
 - $30 \rightarrow 35 \rightarrow 40 \rightarrow 45 \rightarrow 50^+ \text{ cm H}_2\text{O}$ if necessary
- Increase oxygen according to SpO₂ targets
 Increase to 100% if the heart rate is <60/min

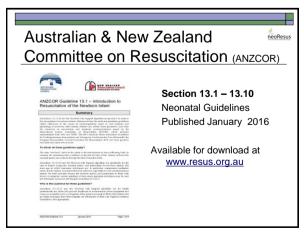

Interventions include:

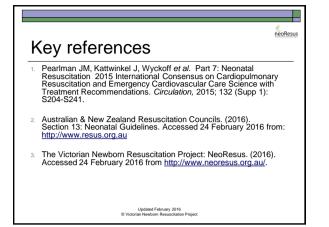

- Intubation
- Insertion of a laryngeal mask airway
- Establishing umbilical venous or intraosseous access
- Administration of adrenaline
- Administration of volume expanders
 - 0.9% sodium chloride
 - O-neg red blood cells if blood loss or shock

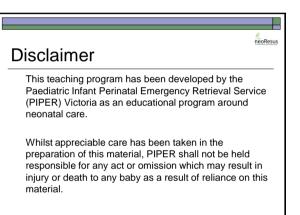
neoResus


Preparing for	or intu	ubatio	n	neof
Endotracheal size and depth of insertion				
Select an appropriate size endotracheal tube according to estimated birth weight	Corrected gestation (Weeks)	ETT size (Guide: GA ÷ 10)	Actual weight (kg)	ETT mark at the lip (cm)
Endotracheal size internal diameter can also be	23 – 24	1	0.5 - 0.6	5.5
calculated as gestation age	25 – 26	- 2.5 mm	0.7 – 0.8	6.0
in weeks divided by 10	27 – 29	Į	0.9 – 1.0	6.5
	30 – 32	3.0 mm	1.1 – 1.4	7.0
	33 – 34	[1.5 – 1.8	7.5
APE	35 – 37	1	1.9 – 2.4	8.0
~ 18 C	38 – 40	– 3.5 mm	2.5 – 3.1	8.5
1.1000	41 - 43		32 - 42	9.0

_				
_				







See the "Learning Resources" section of the NeoResus web site at http://www.neoresus.org.au

C	copyright
•	This presentation was developed by Dr Rosemarie Boland and Dr Marta Thio on behalf of the Victorian Newborn Resuscitation Project (2016).
	The material is copyright NeoResus.
•	This presentation may be downloaded for personal use but remains the intellectual property of NeoResus and as such, may not be reproduced or used for another training program without the written permission of the Victorian Newborn Resuscitation Project Executive.
•	Please contact us at <u>admin@neoresus.org.au</u> Updated February 2016 © Victorian Networm Resuscitation Project